

Balanced Flow Meter by A+ FlowTek

Fluid Flow Metering Specialists

www.APlusFlowTek.com

PPR-501-1 © 2006

A+ FlowTek Background with NASA & Balanced Flow Meter

Basic Equations of Fluid Flow

- Equation of Continuity
- Macroscopic Momentum Balance
- Macroscopic Mechanical Energy Balance
- The Bernoulli Equation for any Real Fluid

Physical Properties

- Extended Lee-Kesler Equation of State (EoS), Patent Pending
- QMC DYFLO Modeling
- Flow Meter Error Detection
- A+ FlowTek Balanced Flow Meter, Patented
- Design Concepts
- Sizing Basis and Hole Layouts
- Restriction Orifice Plate with no Cavitation
- Test Results

- QMC established in 1996 for advanced monitoring & control (health management, sensor validation, etc.)
- Founders developed ABB Instrumentation and DuPont's flow meter sizing programs
- A+ FlowTek established in 2002 for commercialization of several co-patents with NASA and QMC
- First commercial Balanced Flow Meter sale in 2004

Technical Background – con't

- Paul Van Buskirk, MSChE Developer of QMC software
- William Heenan, PhD Flow metering and error detection
- C. B. Boyd Kilgore, BA Specialist of compressors
- Carl Yaws, Ph.D. Specialist of physical properties
- Roger G.E. Franks, MSME Specialist of dynamic simulation
- Walter Bare, Ph.D. Specialist of Refinery
- Anthony R. Kelley, MSEE, MSIT NASA Avionics

Supporting Technical Experience

- A+ FlowTek Meter Sizing Program
- QMC Program
 - (Data Mining, Model, Audit, Monitor, Control, Optimization)
- QMC Engineering Program
 (Equipment Sizing & Specification)
- QMC MIMT© Program
 (Flow & Sensor Error Detection)
- QMC DYFLO Program (Dynamic & Steady State Flow Simulator)
- QMC Extended Lee-Kesler Physical Property Program
- QMC Yaws Physical Property Program
- QMC SPC Program (Statistical Analysis)
- ABB Genie Program
- DuPont ETAP Suite

Traditional Flow Meters

	Differential	Positive	Turbine	Open	Thermal	Variable Area
	Pressure	Displacement		Channel		
Application	Clean liquids, steams, and gases	Clean, non- corrosive liquids and gases	Clean, steady, medium to high- speed flowing liquids or gases	Clean, free- flowing streams or partially filled pipes	Clean gases of known heat capacity	Clean liquids and gases where high accuracy is not required
Fluids	L, G, S	L, G	L, G	L	L, G	L, G
Disadvantage	Permanent pressure drop depends on primary element; orifice plates subject to wear	moving parts subject to wear, requires clean fluids	Moving parts subject to wear, requires clean fluids	Weirs and flumes require obstruction; pressure loss depends on technology	Limited use for liquids; low to medium accuracy	Low accuracy; many do not have output
Advantage	Low cost; well understood	Accurate; measures low flow rates and viscous flows	Reliable; well understood	Limited accuracy, depending on technology	Low cost; measures mass flow	Low cost; many do not require power
Principle of Operation	Flow rate proportional to amount of pressure drop created by constriction in pipe	Fluid trapped into compartments of known volume and emptied; flow rate determined by counting how often this happens	Flow rate proportional to speed of spinning rotor	Level or depth used to determine flow with weirs and flumes; area velocity measures flow rate and level or depth	Flow rate proportional to speed with which heat dissipates in the fluid	Flow rate indicated by how high the fluid lifts a float

Source: Flow Research, Inc.

New Technology Flow Meters

	Coriolis	Magnetic	Ultrasonic	Vortex	Multivariable	Balanced
					Pressure	Meter
Application	Clean, medium to high speed liquids and gases in pipes of 2 inches or less	Clean, conductive liquids flowing through a full pipe	Clean, swirl- free liquids and gases of known profile	Clean, low- viscosity, swirl- free, medium to high speed fluids	Clean liquids (L), steams (S), and gases (G)	Liquids, gases, slurries, certain 2- phase fluids, high velocity flows, low to high viscosity fluids, etc.
Fluids	L, G, S	L	L, G, S	L, G, S	L, G, S	L,G,S
Disadvantage	Price; limited line sizes	Doesn't meter nonconductive fluids	Transit time requires relatively clean fluids	Affected by vibration; somewhat intrusive	Permanent pressure drop- depends on primary element	Minimally intrusive, dependent on beta ratio
Advantage	Accurate	Non-intrusive; minimal pressure drop	Nonintrusive; minimal pressure drop	Minimal pressure drop; accurate	Reduced cost; integrated solution	Significant improvement in accuracy and pressure recovery
Principle of Operation	Mass flow proportional to amount to twist in tube	Flow rate proportional to amount of voltage generate when liquid moves through a magnetic field	Flow rate determined by difference in time it takes an ultrasonic pulse to travel upstream vs. downstream	Flow rate proportional to number of vortices generated by buff body	Measures mass flow by inferential method, measuring pressure and temperature	Flow rate proportional to the SQRT of pressure drop created by area change in pipe
Source: Flow Re	esearch, Inc.					NASA

- Patented technology developed by NASA and A+ FlowTek, Patent serial number 10 / 750,628
- Design based on multi-hole orifice plate
- Flow proportional to SQRT of delta P
- 100 percent increase in pressure recovery
- Ten-fold increase in accuracy
- 15 to 1 reduction in acoustic power intensity
- Basic relation is the Bernoulli equation
- Key design factor is the hole distribution
- Permanent pressure loss, accuracy and discharge coefficient comparable with a venturi meter.

Bernoulli Equation

$$(P_a - P_b)/\rho + g(Z_a - Z_b)/g_c + (\alpha_a V_a^2 - \alpha_b V_b^2)/2g_c - h_{fb} = 0$$

• Equation of Continuity

$$(\rho AV)_a = m = (\rho AV)_b$$

• Simplified Bernoulli Equation

$$(P_a - P_b)/\rho + (V_a^2 - V_b^2)/2g_c = 0$$

The Bernoulli effect is based on a flow area change:

A known change in flow area causes a proportional pressure head change, which can be measured directly by use of a differential pressure sensor. With the known pressure change and area ratio, the flow rate can then be determined.

 $(P_a - P_b)/\rho = (m/\rho A_b)^2 (1 - (A_b/A_a)^2)/2g_c = (m/\rho A_b)^2 (1 - \beta^4)/2g_c$

- Generalized orifice equation
 - Flow equation

$$m = C_0 Y A_b (2g_c \rho_a (P_a - P_b)/(1 - \beta^4))^{1/2}$$

- Super-compressibility factor

Y = 1 - (0.41 + 0.35
$$β^4$$
)(1 - P_b/P_a)/γ

Area Ratio

$$A_{b}/A_{a} = (\beta)^{2} = (1 + S)^{-1/2}$$

where

$$\mathsf{S}=(2\mathsf{g}_{c}\rho(\mathsf{P}_{a}\text{-}\mathsf{P}_{b}))(\mathsf{Y}\mathsf{C}_{O}\mathsf{A}_{a}/m)^{2}$$

- Balanced Flow Meter general equations
 - Flow equation

$$m = C_0 Y A_b (2g_c \rho_a (P_a - P_b)/(1 - \beta^4))^{1/2}$$

- Super-compressibility factor (same as venturi meter)

$$\gamma = \left(\frac{P_b}{P_a}\right)^{1/\lambda} \left\{ \frac{\lambda \left(1 - \beta^4\right) \left[1 - \left(P_b / P_a\right)^{1 - 1/\lambda}\right]}{(\lambda - 1) \left(1 - P_b / P_a\right) \left[1 - \beta^4 \left(P_b / P_a\right)^{2/\lambda}\right]} \right\}^{\frac{1}{2}}$$

Area Ratio

$$A_{b}/A_{a} = (\beta)^{2} = (1 + S)^{-1/2}$$

where

$$S = (2g_c \rho (P_a - P_b))(YC_0 A_a/m)^2$$

- Basic equations of fluid flow
 - Equation of Continuity

$$(\rho Av)_{a,b} = m_a = m_b = Const$$

- Total energy equation

$$m\left[\frac{u_a^2 - u_b^2}{2g_c J} + H_a - H_b\right] = 0$$

- Kinetic energy correction factor

$$\alpha v^2 = u^2$$

- Basic equations of fluid flow
 - Bernoulli equation for fluid flow, for any fluid

$$m = \rho_a A_a \sqrt{\frac{2g_c J(H_a - H_b)}{\alpha_a \left(\frac{\alpha_b}{\alpha_a} \left(\frac{\rho_a A_a}{\rho_b A_b}\right)^2 - 1\right)}}$$

• The Bernoulli equation is derived from the first and second law and the Gibbs fundamental equation. Lost work is defined from momentum balances.

$$\Delta \left(H + \frac{u^2}{2g_c} + \frac{gZ}{g_c}\right)_a m + Q - W_s = 0$$

 $-TdS + \delta LW + \delta Q = 0$

$$dU_{fluid} = T_{fluid} \ dS_{fluid} - P_{fluid} \ dV_{fluid}$$

$$\int \delta LW = LW = k v_b^2 / 2g_c$$

• The Bernoulli equation can be developed from the Macroscopic Mass, Momentum, and Energy Balances

Summary of the Mac Single Chemical Spe	roscopic Balances fo	or Nonisothermal Flow Systems Containing a
· · ·		
Balance	Special Form	Steady State
Mass		$\Delta w = 0$
Momentum		$F = -\Delta \left(\frac{\langle v^2 \rangle}{\langle v \rangle} w + PS \right) + m_{tot} g$
Energy		$\Delta \left(U + P / \rho + \frac{1}{2} \frac{\langle v^3 \rangle}{\langle v \rangle} + \Phi - W \right)$
Mechanical	Isothermal	$\Delta \left(\frac{1}{2} \frac{\langle v^3 \rangle}{\langle v \rangle} + \Phi + G \right) + W + E_v = 0$
Energy	Isentropic	$\Delta \left(\frac{1}{2} \frac{\langle v^3 \rangle}{\langle v \rangle} + \Phi + H \right) + W + E_v = 0$

• From macroscopic balances, the Bernoulli equation is

The enthalpy representation is,

$$m = \left(\frac{2g_c \Delta H}{\left(\frac{k+\alpha}{(\rho A)^2}\right)_b - \left(\frac{\alpha}{(\rho A)^2}\right)_a}\right)^{1/2} = \left(\frac{2g_c \Delta H}{\left(\frac{k+\alpha}{((\partial H/\partial P)_s A)^2}\right)_b - \left(\frac{\alpha}{((\partial H/\partial P)_s A)^2}\right)_a}\right)^{1/2}$$

The Gibbs free enthalpy representation is,

$$m = \left(\frac{2g_c \Delta G}{\left(\frac{k+\alpha}{(\rho A)^2}\right)_b - \left(\frac{\alpha}{(\rho A)^2}\right)_a}\right)^{1/2} = \left(\frac{2g_c \Delta G}{\left(\frac{k+\alpha}{((\partial G/\partial P)_T A)^2}\right)_b - \left(\frac{\alpha}{((\partial G/\partial P)_T A)^2}\right)_a}\right)^{1/2}$$

• Graphically, the enthalpy representation is,

01-1

• Graphically, the Gibbs free enthalpy representation is,

• The discharge coefficient C_D and thermodynamic efficiencies

$$\eta_{eff} = \frac{v_{b,f}^2}{v_{b,ideal}^2} = \frac{(m/\rho)_{b,f}^2}{(m/\rho)_{b,ideal}^2} = \frac{H_b^* - H_{b,f}}{H_a^* - H_{\min,S}} = \frac{\alpha v_{b,f}^2}{\alpha v_{b,f}^2 + k v_{b,f}^2} = \left(\frac{\alpha}{\alpha + k}\right)_b$$

$$C_D \equiv \frac{m_{actual}}{m_{ideal}} = \frac{(\rho A v)_{friction}}{(\rho A v)_{ideal}}$$

$$C_D = \frac{\rho_{b,f}}{\rho_{\min,S}} \left(\frac{\alpha}{\alpha + k}\right)^{1/2} = \frac{\rho_{b,f}}{\rho_{\min,S}} (\eta_{eff})^{1/2}$$

• Plate hole layout basic equation

 $\kappa \rho AV^n$ = Constant for each hole

• Velocity distribution, as one example,

$$V_{\rm R}/V_{\rm max} = (1 - {\rm R}/{\rm R}_{\rm w})^{1/7}$$

Radial areas

$$A_0 + A_1 + A_2 + \dots + A_n = \beta^2 A_{pipe}$$

• Radial area ratios @ $\kappa_1 \rho$ = Constant and n = 1

$$\mathbf{A}_1 / \mathbf{A}_i = \mathbf{V}_i / \mathbf{V}_1$$

Radial velocity ratios

$$V_i/V_1 = ((1 - R_i/R_p)/(1 - R_1/R_p))^{1/7}$$

• Base area (A₁) at R₁

$$A_{1} = (\beta^{2}A_{pipe} - A_{0})/(1 + ((1 - R_{1}/R_{p})/(1 - R_{2}/R_{p}))^{1/7} + \dots + ((1 - R_{1}/R_{p})/(1 - R_{n}/R_{p}))^{1/7})$$

Subsequent radial areas

$$A_i = A_1((1 - R_1/R_p)/(1 - R_i/R_p))^{1/7}$$

• Hole diameters

$$D_i = (4A_i/\pi N)^{1/2}$$

• Typical hole layout ($\beta \approx 0.6$)

Extended Lee-Kesler Equation of State (ELK-EoS), Patent Pending

- Based on a modified Taylor Series using argon, octane and water as reference fluids
- Accuracies over 100,000 data points for 1,700 organic and inorganic compounds show errors within the experimental error of 3 to 5 percent
- Errors can be further reduced by accurate volumetric data and adjustment of the ELK-EoS Q Factor. Errors are less than the original experimental data.
- ELK-EoS applies to volumetric, thermodynamic and transport properties of pure components, their mixtures and across multiple fluid-fluid phases.

Extended Lee-Kesler Equation of State (ELK-EoS), Patent Pending

$$z_{fluid} = z^{(0)} + z^{(1)} + z^{(4)} - \left(\Theta / \Theta^{(0)}\right) \left(z^{(1)} - z^{(2)} - z^{(3)} + z^{(4)}\right)$$

where

$$z^{(1)} = ((\omega - \omega^{(0)}) / (\omega^{(R)} - \omega^{(0)})) (z^{(R)} - z^{(0)})$$
$$z^{(2)} = ((\sigma - \sigma^{(0)}) / (\sigma^{(R)} - \sigma^{(0)})) (z^{(R)} - z^{(0)})$$
$$z^{(3)} = ((\omega - \omega^{(0)}) / (\omega^{(W)} - \omega^{(0)})) (z^{(W)} - z^{(0)})$$
$$z^{(4)} = ((\sigma - \sigma^{(0)}) / (\sigma^{(W)} - \sigma^{(0)})) (z^{(W)} - z^{(0)})$$

and with the Modified Benedict-Webb-Ruben EoS,

$$z = (P_r V_r / T_r) = 1 + B / V_r + C / V_r^2 + D / V_r^5 + c4 / (T_r^3 V_r^2) (\beta + \gamma / V_r^2) \exp(-\gamma / V_r^2)$$

QMC DYFLO Modeling

- DYFLO, developed by DuPont for dynamic simulation of all processes for design, control and optimization.
- The Balanced Flow Meter is implemented into a rigorous steady state and dynamic modeling system for handling multi-component and multi-phase systems.
- For systems that deviate from ideal gas or incompressible liquids, the DYFLO modeling tool is preferred.
- All macroscopic mass, momentum, energy, and power equations are rigorously calculated within DYFLO on a steady state and dynamic basis.
- DYFLO will also perform cavitation analysis and phase calculations within the 2-phase dome based on the spinodal curve.

Flow Meter Error Detection

- The Balanced Flow Meter system with multi-variable (T,P) and multi-location pressure and temperature taps can be equipped for self-calibration and total error minimization.
- The error minimization routine is the Modified Iterative Measurement Test[©] (MIMT), as copyrighted by the AIChE.
- MIMT© is also used for total plant mass balancing and metering error minimization.
- With the MIMT© algorithm, coupled with the performance of the Balanced Flow Meter and the ELK-EoS, errors for flow measurement are negligible and self-calibrating.

The Balanced Flow Meter Measurement device has been tested and verified. This new and unique device utilizes a patented (10/750,628) multi-hole layout design, and provides:

- Over one-hundred percent (100%) increase in pressure recovery
- A ten-fold increase in accuracy
- A fifteen-to-one (15 to 1) reduction in power intensity (i.e. noise reduction) when compared to a standard knife-edged orifice meter.
- Results show that the Balanced Flow Meter plate approaches the performance of a venturi meter.

Experimental Results

Kinetic energy and momentum correction factors for the Balanced Flow Meter (BFM) versus the standard knife-edged orifice plate

$$kE_{cf} = \alpha = \frac{\int u^3 dA}{v^3 A}$$

Balanced Flow Meter

Orifice Plate

 α,β can be calculated for the BFM

Balanced Flow Meter plate performance, from minimum flows to sonic

BETA	0.25	0.500	0.521	0.650	0.500,fouled	0.500,elbow
Avg Cd	0.892	0.882	0.881	0.911	0.824	0.848
Cd Dev	0.032	0.001	0.009	0.010	0.038	0.008
Avg K Val	287.1	16.3	13.2	4.0	15.65	18.63
K Dev	20.8	0.60	0.53	0.16	1.23	0.38

BETA	0.25	0.500	0.521	0.650
Venturi K, Cd=0.96	134.2	5.8	4.7	1.3
Venturi K, Cd=0.80	255.9	12.9	10.7	3.5
BFM K	287.1	16.3	13.2	4.0
Orifice K	669.4	31.5	25.7	7.4

Note: Venturi values do not include downstream losses.

Experimental Results – con't

Balanced Flow Meter calibrations

ORIFICE/VENTURI COEFFICIENT (Cd) PLOT

Balanced Inline and Staggered beta 0.500 Flat side upstream.xls

Experimental Results - con't

Balanced Flow Meter k Factors

Balanced Inline beta 0.650.xls

Experimental Results – con't

Pressure Recovery versus Flow

Pressure Recovery % versus Air Flow %

Experimental Results - con't

Acoustical Noise Levels

Flow Meter Noise @ 1 ft and 90% Air Flow

Design Details

	Λ	Ra	lance	bd	FI		7 N	let	er		
	A	+ Flow	Tek Pater		Bala	nced P	late (General	Spec	ificatio	ns
E1		ow Motoring	Energialista	No	BV	Date	Rov	Shoot	· ·	of	
Flu			Specialists	110	Dy	Date	T(EV	Sheet		Povision	1
								Droject N). No	Dete	
								Project i	NO.	Dale	
		\mathbf{x}		Client	nform of	i an i					
				Client	niormai	ion:		P.U:	Chk'd	Approvo	d
								Бу	Criku	Approve	iu
										-	
	JAL		IFICE PLATES		7 7055					-3	
Standered					7 Taps	Size:	riange	- ipe \	Type		
3 In-Line &	Stann	ered			10 Tvn	e:	Weld N	leck Sli	o On	Threaded	
4 Material:		316	Other:		11 Mat	erial:	Steel	304 316	Other	:	
5 Reference	Dwg.				12 Tap	Orientation	n:	Top Bo	ottom C	Other:	
6 Part No. /	Ser N	0.			13 Flar	ige Rating:		150# 3	600# C	Other:	
BASIC	14	Tag Number									
DATA	15	Service									
	16	Sizing Option		123	4 Othe	er:		123	4 Other	:	
FLUID	17	Fluid						a 11		D.	
AND	18	Fluid State		Gas Liquid 2-Phase			Gas Liquid 2-Phase				
DATA	20	Prossure									
DATA	20	Standard or Actual Flow									
	22	Min Flow									
	23	Normal Flow									
	24	Max Flow									
	25	Tap DP @ Max Flow									
	26	Fluid Composition (attach list)		_							
	27	Phase		Gas Liquid 2-Phase			Gas Li	quid 2-	Phase		
	28	Fouling		High Medium Low			High N	ledium	Low		
	29	Operating Spec	Gravity								
	31	Super Compres	sibility Factor	1				1			
	32	Base Press.	Base Temp.	1				1		1	
PLATE	29	Installation Type	e '	Replace	ement l	New Desig	า	Replacen	nent N	ew Desian	
AND	30	Pressure Reco	/ery	High	Nominal	9		High N	Iominal		
PIPE	31	Accuracy		High Nominal			High Nominal				
DATA	32	Noise Level		N/A Medium Low			N/A Medium Low				
	33	Plate Thickness	· · · · ·	1/4 3/8 1/2 Other:			1/4 3/8	1/2	Other:		
	34	Clearance to Pi	pe Wall	Min Nominal			Min No	ominal			
	35	Pipe Schedule	iamotor	ł							
	37	Pipe ID	ומוווכולו								
	38	Insulation Thickness									
ŀ	39	Flange Schedule		1				1			
	40	Flange Rating					1				
	41	Matl of Construction Plate		316 (316 Other:			316 Other:			
	42	Matl of Construction Pipe		Steel	Steel Other:			Steel Other:			
	43	Tap Types		Flange	Center	Other:		Flange Center Other:			
	44	I ap Orientation	Fasta	Top	Bottom	Other:		Top Bo	ottom C	Other:	
	45	Flow Loop Gain	Factor	1.5 C	1.5 Other:			1.5 Other:			
	40	Calibration Req	uirements	Yes I	00			Yes No)		

Balanced Flow Meter by A+ FlowTek

Fluid Flow Metering Specialists

www.APlusFlowTek.com